Erforschung der exponentiell gewichteten beweglichen durchschnittlichen Volatilität ist die häufigste Maßnahme des Risikos, aber es kommt in mehreren Geschmacksrichtungen. In einem früheren Artikel haben wir gezeigt, wie man einfache historische Volatilität berechnet. (Um diesen Artikel zu lesen, siehe Volatilität verwenden, um zukünftiges Risiko zu beurteilen.) Wir haben Googles aktuelle Aktienkursdaten verwendet, um die tägliche Volatilität auf der Grundlage von 30 Tagen Lagerbestand zu berechnen. In diesem Artikel werden wir die einfache Volatilität verbessern und den exponentiell gewichteten gleitenden Durchschnitt (EWMA) diskutieren. Historische Vs. Implizite Volatilität Zuerst können wir diese Metrik in ein bisschen Perspektive bringen. Es gibt zwei breite Ansätze: historische und implizite (oder implizite) Volatilität. Der historische Ansatz geht davon aus, dass Vergangenheit Prolog ist, messen wir die Geschichte in der Hoffnung, dass es prädiktiv ist. Implizite Volatilität hingegen ignoriert die Geschichte, die sie für die Volatilität der Marktpreise löst. Es hofft, dass der Markt am besten weiß und dass der Marktpreis, auch wenn implizit, eine Konsensschätzung der Volatilität enthält. (Für verwandte Lesung siehe die Verwendungen und Grenzen der Volatilität.) Wenn wir uns nur auf die drei historischen Ansätze konzentrieren (links oben), haben sie zwei Schritte gemeinsam: Berechnen Sie die Reihe der periodischen Renditen Bewerben Sie ein Gewichtungsschema Zuerst haben wir Berechnen Sie die periodische Rückkehr. Das ist typischerweise eine Reihe von täglichen Renditen, bei denen jede Rückkehr in kontinuierlich zusammengesetzten Begriffen ausgedrückt wird. Für jeden Tag nehmen wir das natürliche Protokoll des Verhältnisses der Aktienkurse (d. h. der Preis heute geteilt durch den Preis gestern und so weiter). Dies führt zu einer Reihe von täglichen Renditen, von u i zu u i-m. Je nachdem wie viele Tage (m Tage) wir messen. Das bringt uns zum zweiten Schritt: Hier unterscheiden sich die drei Ansätze. In dem vorherigen Artikel (mit Volatility To Gauge Future Risk), haben wir gezeigt, dass unter ein paar akzeptablen Vereinfachungen, die einfache Varianz ist der Durchschnitt der quadrierten Renditen: Beachten Sie, dass dies summiert jede der periodischen Renditen, dann teilt diese Summe durch die Anzahl der Tage oder Beobachtungen (m). Also, es ist wirklich nur ein Durchschnitt der quadratischen periodischen Rückkehr. Setzen Sie einen anderen Weg, jede quadratische Rückkehr wird ein gleiches Gewicht gegeben. Wenn also Alpha (a) ein Gewichtungsfaktor ist (speziell 1 m), dann sieht eine einfache Varianz so aus: Die EWMA verbessert sich auf einfache Abweichung Die Schwäche dieses Ansatzes ist, dass alle Renditen das gleiche Gewicht verdienen. Gestern (sehr neuere) Rückkehr hat keinen Einfluss mehr auf die Varianz als die letzten Monate zurück. Dieses Problem wird durch die Verwendung des exponentiell gewichteten gleitenden Durchschnitts (EWMA) behoben, bei dem neuere Renditen ein größeres Gewicht auf die Varianz haben. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) führt Lambda ein. Der als Glättungsparameter bezeichnet wird. Lambda muss kleiner als eins sein. Unter dieser Bedingung wird anstelle von gleichen Gewichten jede quadrierte Rendite mit einem Multiplikator wie folgt gewichtet: Zum Beispiel neigt RiskMetrics TM, ein Finanzrisikomanagement-Unternehmen, dazu, ein Lambda von 0,94 oder 94 zu verwenden. In diesem Fall ist das erste ( (1 - 0,94) (94) 0 6. Die nächste quadratische Rückkehr ist einfach ein Lambda-Vielfaches des vorherigen Gewichts in diesem Fall 6 multipliziert mit 94 5,64. Und das dritte vorherige Tagegewicht ist gleich (1-0,94) (0,94) 2 5,30. Das ist die Bedeutung von Exponential in EWMA: jedes Gewicht ist ein konstanter Multiplikator (d. h. Lambda, der kleiner als eins sein muss) des vorherigen Tagegewichts. Dies stellt eine Varianz sicher, die gewichtet oder voreingenommen auf neuere Daten ist. (Um mehr zu erfahren, schau dir das Excel-Arbeitsblatt für Googles-Volatilität an.) Der Unterschied zwischen einfacher Volatilität und EWMA für Google ist unten dargestellt. Die einfache Volatilität wirkt effektiv jede periodische Rendite um 0,196, wie in Spalte O gezeigt (wir hatten zwei Jahre täglich Kursdaten, das sind 509 tägliche Renditen und 1509 0,196). Aber beachten Sie, dass Spalte P ein Gewicht von 6, dann 5.64, dann 5.3 und so weiter zuteilt. Das ist der einzige Unterschied zwischen einfacher Varianz und EWMA. Denken Sie daran: Nachdem wir die ganze Serie (in Spalte Q) zusammengefasst haben, haben wir die Varianz, die das Quadrat der Standardabweichung ist. Wenn wir Volatilität wollen, müssen wir uns daran erinnern, die Quadratwurzel dieser Varianz zu nehmen. Was ist der Unterschied in der täglichen Volatilität zwischen der Varianz und EWMA im Googles-Fall Sein signifikant: Die einfache Varianz gab uns eine tägliche Volatilität von 2,4, aber die EWMA gab eine tägliche Volatilität von nur 1,4 (siehe die Kalkulationstabelle für Details). Anscheinend hat sich die Googles-Volatilität in jüngster Zeit niedergelassen, eine einfache Varianz könnte künstlich hoch sein. Heutige Varianz ist eine Funktion von Pior Days Variance Youll bemerken wir brauchten, um eine lange Reihe von exponentiell abnehmenden Gewichten zu berechnen. Wir werden die Mathematik hier nicht machen, aber eines der besten Features der EWMA ist, dass die ganze Serie bequem auf eine rekursive Formel reduziert: Rekursive bedeutet, dass heutige Varianzreferenzen (d. h. eine Funktion der vorherigen Tagesabweichung) ist. Sie finden diese Formel auch in der Kalkulationstabelle, und sie erzeugt genau das gleiche Ergebnis wie die Langzeitberechnung Es heißt: Die heutige Varianz (unter EWMA) ist gleichbedeutend mit der vulkanischen Varianz (gewichtet durch Lambda) plus gestern quadrierte Rückkehr (gewogen von einem Minus Lambda). Beachten Sie, wie wir nur zwei Begriffe zusammenfügen: gestern gewichtete Varianz und gestern gewichtet, quadratische Rückkehr. Dennoch ist Lambda unser Glättungsparameter. Ein höheres Lambda (z. B. RiskMetrics 94) zeigt einen langsamen Abfall in der Serie an - in relativer Hinsicht werden wir mehr Datenpunkte in der Serie haben und sie werden langsamer abfallen. Auf der anderen Seite, wenn wir das Lambda reduzieren, zeigen wir einen höheren Zerfall an: die Gewichte fallen schneller ab, und als direkte Folge des schnellen Zerfalls werden weniger Datenpunkte verwendet. (In der Kalkulationstabelle ist Lambda ein Eingang, also kannst du mit seiner Empfindlichkeit experimentieren). Zusammenfassung Volatilität ist die momentane Standardabweichung eines Bestandes und die häufigste Risikometrität. Es ist auch die Quadratwurzel der Varianz. Wir können die Abweichung historisch oder implizit (implizite Volatilität) messen. Wenn man historisch misst, ist die einfachste Methode eine einfache Varianz. Aber die Schwäche mit einfacher Abweichung ist, dass alle Renditen das gleiche Gewicht bekommen. So stehen wir vor einem klassischen Kompromiss: Wir wollen immer mehr Daten, aber je mehr Daten wir haben, desto mehr wird unsere Berechnung durch entfernte (weniger relevante) Daten verdünnt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) verbessert die einfache Varianz durch die Zuordnung von Gewichten zu den periodischen Renditen. Auf diese Weise können wir beide eine große Stichprobengröße verwenden, aber auch ein größeres Gewicht auf neuere Renditen geben. (Um ein Film-Tutorial zu diesem Thema zu sehen, besichtige die Bionische Schildkröte.) Bei einer Zeitreihe xi möchte ich einen gewichteten gleitenden Durchschnitt mit einem Mittelungsfenster von N Punkten berechnen, wobei die Gewichtungen mehr aktuelle Werte über ältere Werte bevorzugen. Bei der Auswahl der Gewichte verwende ich die vertraute Tatsache, daß eine geometrische Reihe auf 1, d. h. Summe (frac) k konvergiert, sofern unendlich viele Begriffe genommen werden. Um eine diskrete Anzahl von Gewichten zu erhalten, die zu einer Einheit zusammenfallen, nehme ich einfach die ersten N Ausdrücke der geometrischen Reihe (frac) k und dann normalisiere durch ihre Summe. Wenn N4 zum Beispiel die nicht normalisierten Gewichte gibt, die nach der Normalisierung durch ihre Summe den gleitenden Durchschnitt ergibt, ist dann einfach die Summe des Produktes der letzten 4 Werte gegen diese normalisierten Gewichte. Diese Methode verallgemeinert sich in der offensichtlichen Weise, Fenster der Länge N zu bewegen, und scheint auch rechnerisch einfach zu sein. Gibt es einen Grund, diesen einfachen Weg nicht zu verwenden, um einen gewichteten gleitenden Durchschnitt mit exponentiellen Gewichten zu berechnen, die ich frage, weil der Wikipedia-Eintrag für EWMA komplizierter erscheint. Was mich frage mich, ob die Lehrbuch-Definition von EWMA vielleicht einige statistische Eigenschaften hat, dass die obige einfache Definition nicht oder sind sie in der Tat gleichbedeutend mit dem 28. November 12 um 23:53 Zuerst beginnen Sie 1) dass es keine ungewöhnlichen Werte gibt Und kein Level-Verschiebungen und keine Zeit-Trends und keine saisonalen Dummies 2), dass der optimale gewichtete Durchschnitt Gewichte hat, die auf eine glatte Kurve fallen, die durch 1 Koeffizient 3 beschriftet werden kann), dass die Fehlerabweichung konstant ist, dass es keine bekannten Ursachen gibt Annahmen. Ndash IrishStat Oct 1 14 at 21:18 Ravi: In dem angegebenen Beispiel beträgt die Summe der ersten vier Terme 0,9375 0,06250,1250.250,5. Also, die ersten vier Begriffe halten 93,8 des Gesamtgewichts (6,2 ist im abgeschnittenen Schwanz). Benutze dies, um normalisierte Gewichte zu erhalten, die durch eine Reskalierung (Teilung) um 0,9375 zur Einheit addieren. Dies ergibt 0,06667, 0,1333, 0,2667, 0,5333. Ndash Assad Ebrahim Ich habe festgestellt, dass die Berechnung exponetisch gewichtete Laufdurchschnitte mit Overline leftarrow overline alpha (x - overline), alphalt1 ist eine einfache einzeilige Methode, das ist leicht, wenn auch nur annähernd interpretierbar in Bezug auf Eine effektive Anzahl von Samples Nalpha (vergleiche dieses Formular mit dem Formular für die Berechnung des laufenden Durchschnitts), benötigt nur das aktuelle Datum (und den aktuellen Mittelwert) und ist numerisch stabil. Technisch beinhaltet dieser Ansatz alle Geschichte in den Durchschnitt. Die beiden Hauptvorteile bei der Verwendung des Vollfensters (im Gegensatz zu der in der Frage besprochenen abgeschnittenen) sind, dass es in manchen Fällen die analytische Charakterisierung der Filterung erleichtern kann und die Fluktuationen, die bei sehr großen (oder kleinen) Daten entstehen, reduziert Wert ist Teil des Datensatzes. Zum Beispiel betrachten wir das Filterergebnis, wenn die Daten alle null sind, mit Ausnahme eines Datums, dessen Wert 106 ist. Beantwortet 29. November 12 bei 0: 33Weighted Moving Averages: Die Grundlagen Im Laufe der Jahre haben Techniker zwei Probleme mit dem einfachen gleitenden Durchschnitt gefunden. Das erste Problem liegt im Zeitrahmen des gleitenden Mittelwertes (MA). Die meisten technischen Analysten glauben, dass Preisaktion. Der Eröffnungs - oder Schlussbestandspreis, ist nicht genug, auf die für die ordnungsgemäße Vorhersage des Kaufs oder der Verkaufssignale der MAs Crossover-Aktion abzusehen ist. Um dieses Problem zu lösen, weisen die Analysten nunmehr die aktuellsten Preisdaten mit dem exponentiell geglätteten gleitenden Durchschnitt (EMA) zu. (Erfahren Sie mehr bei der Erforschung der exponentiell gewogenen bewegten Durchschnitt.) Ein Beispiel Zum Beispiel, mit einem 10-Tage-MA, würde ein Analytiker den Schlusskurs des 10. Tages und multiplizieren diese Zahl um 10, der neunte Tag um neun, der achte Tag für acht und so weiter zum ersten der MA. Sobald die Summe bestimmt worden ist, würde der Analytiker dann die Zahl durch die Addition der Multiplikatoren teilen. Wenn Sie die Multiplikatoren des 10-Tage-MA-Beispiels hinzufügen, ist die Zahl 55. Dieser Indikator wird als linear gewichteter gleitender Durchschnitt bezeichnet. (Für verwandte Lesung, check out Simple Moving Averages machen Trends Stand out.) Viele Techniker sind festgläubig in der exponentiell geglätteten gleitenden Durchschnitt (EMA). Dieser Indikator wurde in so vielen verschiedenen Weisen erklärt, dass er Studenten und Investoren gleichermaßen verwechselt. Vielleicht kommt die beste Erklärung von John J. Murphys Technische Analyse der Finanzmärkte, (veröffentlicht vom New York Institute of Finance, 1999): Der exponentiell geglättete gleitende Durchschnitt adressiert beide Probleme, die mit dem einfachen gleitenden Durchschnitt verbunden sind. Zuerst weist der exponentiell geglättete Durchschnitt den neueren Daten ein größeres Gewicht zu. Daher ist es ein gewichteter gleitender Durchschnitt. Aber während es den vergangenen Preisdaten eine geringere Bedeutung zuweist, enthält es in der Berechnung alle Daten im Leben des Instruments. Darüber hinaus ist der Benutzer in der Lage, die Gewichtung anpassen, um mehr oder weniger Gewicht auf die jüngsten Tage Preis, die zu einem Prozentsatz der vorherigen Tage Wert hinzugefügt wird. Die Summe der beiden Prozentwerte addiert sich zu 100. Beispielsweise könnte dem letzten Tagepreis ein Gewicht von 10 (.10) zugewiesen werden, der zu den vorherigen Tagen Gewicht von 90 (.90) hinzugefügt wird. Dies gibt den letzten Tag 10 der Gesamtgewichtung. Dies wäre das Äquivalent zu einem 20-Tage-Durchschnitt, indem man den letzten Tage Preis einen kleineren Wert von 5 (.05). Abbildung 1: Exponentiell geglättete Moving Average Die obige Grafik zeigt den Nasdaq Composite Index von der ersten Woche im August 2000 bis zum 1. Juni 2001. Wie Sie deutlich sehen können, ist die EMA, die in diesem Fall die Schlusskursdaten über einen Neun-Tage-Periode, hat definitive Verkaufssignale am 8. September (gekennzeichnet durch einen schwarzen Pfeil nach unten). Dies war der Tag, an dem der Index unter dem Niveau von 4.000 unterging. Der zweite schwarze Pfeil zeigt ein weiteres heruntergekommenes Bein, das die Techniker eigentlich erwarten. Die Nasdaq konnte nicht genug Volumen und Interesse von den Einzelhandelsanlegern erzeugen, um die 3.000 Mark zu brechen. Dann tauchte es wieder auf den Boden bei 1619.58 am 4. April. Der Aufwärtstrend vom 12. April ist durch einen Pfeil markiert. Hier schloss der Index um 1.961.46, und Techniker begannen, institutionelle Fondsmanager zu sehen, die anfangen, einige Schnäppchen wie Cisco, Microsoft und einige der energiebezogenen Fragen aufzuheben. (Lesen Sie unsere verwandten Artikel: Moving Average Envelopes: Verfeinerung eines beliebten Trading-Tool und Moving Average Bounce.)
No comments:
Post a Comment