Moving Average Dieses Beispiel lehrt Sie, wie Sie den gleitenden Durchschnitt einer Zeitreihe in Excel berechnen können. Ein gleitender Durchschnitt wird verwendet, um Unregelmäßigkeiten (Gipfel und Täler) zu glätten, um Trends leicht zu erkennen. 1. Zuerst schauen wir uns unsere Zeitreihen an. 2. Klicken Sie auf der Registerkarte Daten auf Datenanalyse. Hinweis: Kann die Schaltfläche Datenanalyse nicht finden Hier klicken, um das Analysis ToolPak-Add-In zu laden. 3. Wählen Sie Moving Average und klicken Sie auf OK. 4. Klicken Sie in das Feld Eingabebereich und wählen Sie den Bereich B2: M2. 5. Klicken Sie in das Feld Intervall und geben Sie 6 ein. 6. Klicken Sie in das Feld Ausgabebereich und wählen Sie Zelle B3. 8. Zeichnen Sie einen Graphen dieser Werte. Erläuterung: Da wir das Intervall auf 6 setzen, ist der gleitende Durchschnitt der Durchschnitt der bisherigen 5 Datenpunkte und der aktuelle Datenpunkt. Dadurch werden Gipfel und Täler geglättet. Die Grafik zeigt einen zunehmenden Trend. Excel kann den gleitenden Durchschnitt für die ersten 5 Datenpunkte nicht berechnen, da es nicht genügend vorherige Datenpunkte gibt. 9. Wiederholen Sie die Schritte 2 bis 8 für Intervall 2 und Intervall 4. Fazit: Je größer das Intervall, desto mehr werden die Gipfel und Täler geglättet. Je kleiner das Intervall ist, desto näher sind die gleitenden Mittelwerte auf die tatsächlichen Datenpunkte. Prognoseberechnungsbeispiele A.1 Prognoseberechnungsmethoden Es sind zwölf Methoden zur Berechnung von Prognosen verfügbar. Die meisten dieser Methoden sorgen für eine begrenzte Benutzerkontrolle. Zum Beispiel könnte das Gewicht der letzten historischen Daten oder der Datumsbereich der in den Berechnungen verwendeten historischen Daten angegeben werden. Die folgenden Beispiele zeigen das Berechnungsverfahren für jede der verfügbaren Prognosemethoden, wobei ein identischer Satz historischer Daten vorliegt. Die folgenden Beispiele verwenden die gleichen Verkaufs - und Verkaufsdaten von 2004 und 2005, um eine Umsatzprognose von 2006 zu erzielen. Neben der Prognoseberechnung enthält jedes Beispiel eine simulierte Prognose für die Dauer von drei Monaten (Verarbeitungsoption 19 3), die dann für prozentuale Genauigkeit und mittlere Absolutabweichungsberechnungen verwendet wird (tatsächlicher Umsatz im Vergleich zur simulierten Prognose). A.2 Prognoseleistungsbewertungskriterien Abhängig von Ihrer Auswahl an Verarbeitungsoptionen und den in den Verkaufsdaten vorhandenen Trends und Mustern werden einige Prognosemethoden besser als andere für einen bestimmten historischen Datensatz durchgeführt. Eine für ein Produkt geeignete Vorhersagemethode ist möglicherweise nicht für ein anderes Produkt geeignet. Es ist auch unwahrscheinlich, dass eine Prognosemethode, die auf einer Stufe des Produktlebenszyklus gute Ergebnisse liefert, während des gesamten Lebenszyklus angemessen bleibt. Sie können zwischen zwei Methoden wählen, um die aktuelle Leistung der Prognosemethoden zu bewerten. Dies sind mittlere Absolute Abweichung (MAD) und Prozent der Genauigkeit (POA). Beide dieser Leistungsbewertungsmethoden erfordern historische Verkaufsdaten für einen vom Benutzer festgelegten Zeitraum. Diese Zeitspanne wird als Halteperiode oder Perioden am besten passt (PBF). Die Daten in diesem Zeitraum dienen als Grundlage für die Empfehlung, welche der Prognosemethoden bei der nächsten Prognoseprojektion verwendet werden sollen. Diese Empfehlung ist für jedes Produkt spezifisch und kann von einer Prognoseerzeugung zur nächsten wechseln. Die beiden prognostizierten Leistungsbewertungsmethoden werden in den Seiten nach den Beispielen der zwölf Prognosemethoden gezeigt. A.3 Methode 1 - angegebener Prozentsatz über letztes Jahr Diese Methode multipliziert die Verkaufsdaten des Vorjahres mit einem vom Anwender angegebenen Faktor, zB 1,10 für 10 Zunahme oder 0,97 für 3 Abnahmen. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus der benutzerdefinierten Anzahl von Zeiträumen zur Auswertung der Prognoseleistung (Verarbeitungsoption 19). A.4.1 Prognoseberechnung Umfang des Verkaufsverlaufs bei der Berechnung des Wachstumsfaktors (Verarbeitungsoption 2a) 3 in diesem Beispiel. Summe der letzten drei Monate des Jahres 2005: 114 119 137 370 Summe der gleichen drei Monate für das Vorjahr: 123 139 133 395 Der berechnete Faktor 370395 0.9367 Berechnen Sie die Prognosen: Januar 2005 Umsatz 128 0.9367 119.8036 oder ca. 120. Februar 2005 Umsatz 117 0.9367 109.5939 oder ca. 110. März 2005 Umsatz 115 0.9367 107.7205 oder ca. 108 A.4.2 Simulierte Prognoseberechnung Summe der drei Monate 2005 vor der Halteperiode (Juli, Aug, September): 129 140 131 400 Summe der gleichen drei Monate für die Vorjahr: 141 128 118 387 Der berechnete Faktor 400387 1.033591731 Berechnen der simulierten Prognose: Oktober 2004 Umsatz 123 1.033591731 127.13178 November 2004 Umsatz 139 1.033591731 143.66925 Dezember 2004 Umsatz 133 1.033591731 137.4677 A.4.3 Prozent der Genauigkeitsberechnung POA (127.13178 143.66925 137.4677) (114 119 137) 100 408,26873 370 100 110.3429 A.4.4 Mittlere Absolutabweichungsberechnung MAD (127.13178 - 114 143.66925 - 119 137.4677- 137) 3 (13.13178 24.66925 0.4677) 3 12.75624 A.5 Methode 3 - Letztes Jahr zu diesem Jahr Diese Methode Kopiert die Verkaufsdaten vom Vorjahr auf das nächste Jahr. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus die Anzahl der für die Auswertung der Prognoseleistung festgelegten Zeiträume (Verarbeitungsoption 19). A.6.1 Prognoseberechnung Anzahl der Perioden, die in den Durchschnitt einbezogen werden sollen (Verarbeitungsoption 4a) 3 in diesem Beispiel Für jeden Monat der Prognose durchschnittlich die letzten drei Monate Daten. Januar-Prognose: 114 119 137 370, 370 3 123.333 oder 123 Februar Prognose: 119 137 123 379, 379 3 126.333 oder 126 März Vorhersage: 137 123 126 379, 386 3 128.667 oder 129 A.6.2 Simulierte Prognoseberechnung Oktober 2005 Umsatz (129 140 131) 3 133.3333 November 2005 Umsatz (140 131 114) 3 128.3333 Dezember 2005 Umsatz (131 114 119) 3 121.3333 A.6.3 Prozent der Genauigkeitsberechnung POA (133.3333 128.3333 121.3333) (114 119 137) 100 103.513 A.6.4 Mittleres Absolut Abweichungsberechnung MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) 3 14.7777 A.7 Methode 5 - Lineare Approximation Lineare Approximation berechnet einen Trend auf der Grundlage von zwei Erfolgsdaten. Diese beiden Punkte definieren eine gerade Trendlinie, die in die Zukunft projiziert wird. Verwenden Sie diese Methode mit Vorsicht, da Langstreckenprognosen durch kleine Änderungen in nur zwei Datenpunkten genutzt werden. Erforderliche Verkaufsgeschichte: Die Anzahl der Perioden, die in die Regression einbezogen werden (Verarbeitungsoption 5a), plus 1 plus die Anzahl der Zeiträume für die Bewertung der Prognoseleistung (Verarbeitungsoption 19). A.8.1 Prognoseberechnung Anzahl der Perioden, die in die Regression einbezogen werden sollen (Verarbeitungsoption 6a) 3 in diesem Beispiel Für jeden Monat der Prognose fügen Sie die Zunahme oder Abnahme während der angegebenen Zeiträume vor der Halteperiode der vorherigen Periode hinzu. Durchschnitt der letzten drei Monate (114 119 137) 3 123.3333 Zusammenfassung der letzten drei Monate mit Gewicht betrachtet (114 1) (119 2) (137 3) 763 Unterschied zwischen den Werten 763 - 123.3333 (1 2 3) 23 Verhältnis ( 12 22 32) - 2 3 14 - 12 2 Wert1 DifferenzRatio 232 11,5 Wert2 Durchschnitt - Wert1 Verhältnis 123.3333 - 11.5 2 100.3333 Prognose (1 n) Wert1 Wert2 4 11.5 100.3333 146.333 oder 146 Prognose 5 11.5 100.3333 157.8333 oder 158 Prognose 6 11.5 100.3333 169.3333 Oder 169 A.8.2 Simulierte Prognoseberechnung Oktober 2004 Umsatz: Durchschnitt der letzten drei Monate (129 140 131) 3 133.3333 Zusammenfassung der letzten drei Monate mit Gewicht (129 1) (140 2) (131 3) 802 Unterschied zwischen den Werte 802 - 133.3333 (1 2 3) 2 Verhältnis (12 22 32) - 2 3 14 - 12 2 Wert1 DifferenzRatio 22 1 Wert2 Durchschnitt - Wert1 Verhältnis 133.3333 - 1 2 131.3333 Prognose (1 n) Wert1 Wert2 4 1 131.3333 135.3333 November 2004 Umsatz Durchschnitt der letzten drei Monate (140 131 114) 3 128.3333 Zusammenfassung der letzten drei Monate mit Gewichtsbetrachtung (140 1) (131 2) (114 3) 744 Unterschied zwischen den Werten 744 - 128.3333 (1 2 3) -25.9999 Wert1 UnterschiedRatio -25.99992 -12.9999 Wert2 Durchschnitt - Wert1 Verhältnis 128.3333 - (-12.9999) 2 154.3333 Prognose 4 -12.9999 154.3333 102.3333 Dezember 2004 Umsatz Durchschnitt der letzten drei Monate (131 114 119) 3 121.3333 Zusammenfassung der letzten drei Monate mit Gewicht berücksichtigt (131 1) (114 2) (119 3) 716 Differenz zwischen den Werten 716 - 121.3333 (1 2 3) -11.9999 Wert1 DifferenzRatio -11.99992 -5.9999 Wert2 Durchschnitt - Wert1 Verhältnis 121.3333 - (-5.9999) 2 133.3333 Prognose 4 (- 5.9999) 133.3333 109.3333 A.8.3 Prozent der Genauigkeitsberechnung POA (135.33 102.33 109.33) (114 119 137) 100 93.78 A.8.4 Mittlere Absolutabweichungsberechnung MAD (135.33 - 114 102.33 - 119 109.33 - 137) 3 21.88 A.9 Methode 7 - Zweite Grad Approximation Lineare Regression bestimmt Werte für a und b in der Prognoseformel Y a bX mit dem Ziel, eine Gerade an die Verkaufsgeschichte Daten anzupassen. Zweite Grad Approximation ist ähnlich. Dieses Verfahren bestimmt jedoch Werte für a, b und c in der Prognoseformel Y a bX cX2 mit dem Ziel, eine Kurve an die Verkaufsverlaufsdaten anzupassen. Diese Methode kann nützlich sein, wenn ein Produkt im Übergang zwischen den Phasen eines Lebenszyklus ist. Zum Beispiel, wenn ein neues Produkt von der Einführung in Wachstumsstadien bewegt, kann sich die Umsatzentwicklung beschleunigen. Wegen des Termes zweiter Ordnung kann sich die Prognose schnell an die Unendlichkeit wenden oder auf Null fallen (je nachdem, ob der Koeffizient c positiv oder negativ ist). Daher ist diese Methode nur kurzfristig sinnvoll. Prognosevorgaben: Die Formeln finden a, b und c, um eine Kurve auf genau drei Punkte zu passen. Sie spezifizieren n in der Verarbeitungsoption 7a, die Anzahl der Zeitperioden der Daten, die sich in jedem der drei Punkte ansammeln. In diesem Beispiel n 3. Daher werden die tatsächlichen Verkaufsdaten für April bis Juni in den ersten Punkt, Q1 zusammengefasst. Juli bis September werden zusammen addiert, um Q2 zu schaffen, und Oktober bis Dezember Summe zu Q3. Die Kurve wird an die drei Werte Q1, Q2 und Q3 angepasst. Erforderliche Verkaufsgeschichte: 3 n Perioden für die Berechnung der Prognose plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseleistung (PBF) erforderlich sind. Anzahl der zu berücksichtigenden Perioden (Verarbeitungsoption 7a) 3 in diesem Beispiel Verwenden Sie die vorherigen (3 n) Monate in dreimonatigen Blöcken: Q1 (Apr - Jun) 125 122 137 384 Q2 (Jul - Sep) 129 140 131 400 Q3 ( Der nächste Schritt beinhaltet die Berechnung der drei Koeffizienten a, b und c, die in der Prognoseformel Y a bX cX2 (1) Q1 a bX cX2 (wobei X 1) abc (2) Q2 verwendet werden soll A bX cX2 (wobei X 2) a 2b 4c (3) Q3 a bX cX2 (wobei X 3) a 3b 9c die drei Gleichungen gleichzeitig lösen, um b, a und c zu finden: Subtrahieren Sie Gleichung (1) aus Gleichung (2) Und lösen für b (2) - (1) Q2 - Q1 b 3c Ersetzen Sie diese Gleichung für b in Gleichung (3) (3) Q3 a 3 (Q2 - Q1) - 3c c Schließlich ersetzen Sie diese Gleichungen für a und b in Gleichung (1) Q3 - 3 (Q2 - Q1) (q2 - Q1) - 3c c Q1 c (Q3 - Q2) (Q1 - Q2) 2 Die zweite Grad Approximation Methode berechnet a, b und c wie folgt: a Q3 (Q & sub3; - Q & sub1;) (Q & sub3; - Q & sub1;) (Q & sub3; - Q & sub1;) (3) (3) 400 - 384) - (3 -23) 85 Y a bX cX2 322 85X (-23) X2 Januar bis März Vorhersage (X4): (322 340 - 368) 3 2943 98 pro Periode April bis Juni Vorhersage (X5): ( 322 425 - 575) 3 57.333 oder 57 pro Periode Juli bis September Vorhersage (X6): (322 510 - 828) 3 1,33 oder 1 pro Periode Oktober bis Dezember (X7) (322 595 - 11273 -70 A.9.2 Simulierte Prognoseberechnung Oktober, November und Dezember 2004 Umsatz: Q1 (Jan - Mar) 360 Q2 (Apr - Jun) 384 Q3 (Jul - Sep) 400 a 400 - 3 (384 - 360) 328 c (400 - 384) (360 - 384) ) 2 -4 b (384 - 360) - 3 (-4) 36 328 36 4 (-4) 163 136 A.9.3 Prozent der Genauigkeitsberechnung POA (136 136 136) (114 119 137) 100 110,27 A.9.4 Mittelwert Absolute Abweichungsberechnung MAD (136 - 114 136 - 119 136 - 137) 3 13.33 A.10 Methode 8 - Flexible Methode Die Flexible Methode (Prozent über n Monate vorher) ähnelt Methode 1, Prozent über letztes Jahr. Beide Methoden vervielfachen Verkaufsdaten aus einem früheren Zeitraum durch einen vom Benutzer angegebenen Faktor, dann projektieren sie in die Zukunft. In der Percent Over Last Year Methode basiert die Projektion auf Daten aus dem gleichen Zeitraum im Vorjahr. Die Flexible Methode fügt die Möglichkeit hinzu, einen anderen Zeitraum als denselben Zeitraum im letzten Jahr anzugeben, um als Grundlage für die Berechnungen zu verwenden. Multiplikationsfaktor Geben Sie zum Beispiel 1.15 in der Verarbeitungsoption 8b an, um die bisherigen Verkaufsverlaufsdaten um 15 zu erhöhen. Basisperiode. Beispielsweise wird n 3 die erste Prognose auf die Verkaufsdaten im Oktober 2005 stützen. Mindestverkaufsgeschichte: Der Benutzer spezifizierte die Anzahl der Perioden zurück zum Basiszeitraum sowie die Anzahl der Zeiträume, die für die Bewertung der Prognoseleistung erforderlich sind ( PBF). A.10.4 Mittlere Absolutabweichungsberechnung MAD (148 - 114 161 - 119 151 - 137) 3 30 A.11 Methode 9 - Gewichteter bewegter Durchschnitt Die Methode der gewichteten beweglichen Mittelwerte (WMA) ähnelt Methode 4, Moving Average (MA). Allerdings können Sie mit dem Weighted Moving Average den historischen Daten ungleiche Gewichte zuordnen. Die Methode berechnet einen gewichteten Durchschnitt der letzten Verkaufsgeschichte, um kurzfristig eine Projektion zu erreichen. Neuere Daten werden in der Regel ein größeres Gewicht als ältere Daten zugewiesen, so dass WMA besser auf Verschiebungen in der Ebene des Umsatzes reagiert. Allerdings treten prognostizierte Vorurteile und systematische Fehler immer noch auf, wenn die Produktverkaufsgeschichte starke Trend - oder Saisonmuster aufweist. Diese Methode funktioniert besser für kurzfristige Prognosen von reifen Produkten anstatt für Produkte in den Wachstums - oder Obsoleszenzstadien des Lebenszyklus. N die Anzahl der Perioden der Verkaufsgeschichte, die in der Prognoseberechnung verwendet werden soll. Geben Sie z. B. n 3 in der Verarbeitungsoption 9a an, um die letzten drei Perioden als Grundlage für die Projektion in den nächsten Zeitraum zu verwenden. Ein großer Wert für n (z. B. 12) erfordert mehr Verkaufsgeschichte. Es führt zu einer stabilen Prognose, wird aber langsam zu einer Verschiebung des Umsatzniveaus kommen. Auf der anderen Seite wird ein kleiner Wert für n (wie z. B. 3) schneller auf Verschiebungen in der Ebene des Umsatzes reagieren, aber die Prognose kann so weit schwanken, dass die Produktion nicht auf die Variationen reagieren kann. Das Gewicht, das jedem der historischen Datenperioden zugeordnet ist. Die zugeteilten Gewichte müssen auf 1,00 betragen. Zum Beispiel, wenn n 3, Gewichte von 0,6, 0,3 und 0,1 zuordnen, wobei die letzten Daten das größte Gewicht erhalten. Mindestens erforderliche Verkaufsgeschichte: n plus die Anzahl der Zeiträume, die für die Auswertung der Prognoseleistung (PBF) erforderlich sind. MAD (133,5 - 114 121,7 - 119 118,7 - 137) 3 13,5 A.12 Methode 10 - Lineare Glättung Diese Methode ähnelt Methode 9, Weighted Moving Average (WMA). Jedoch wird anstelle der willkürlichen Zuordnung von Gewichten zu den historischen Daten eine Formel verwendet, um Gewichte zuzuordnen, die linear abfallen und auf 1,00 summieren. Die Methode berechnet dann einen gewichteten Durchschnitt der letzten Verkaufsgeschichte, um kurzfristig eine Projektion zu erreichen. Wie bei allen linearen gleitenden durchschnittlichen Prognosetechniken zutreffend, treten prognostizierte Vorurteile und systematische Fehler auf, wenn die Produktverkaufsgeschichte starke Trend - oder Saisonmuster aufweist. Diese Methode funktioniert besser für kurzfristige Prognosen von reifen Produkten anstatt für Produkte in den Wachstums - oder Obsoleszenzstadien des Lebenszyklus. N die Anzahl der Perioden der Verkaufsgeschichte, die in der Prognoseberechnung verwendet werden soll. Dies ist in der Verarbeitungsoption 10a angegeben. Geben Sie z. B. n 3 in der Verarbeitungsoption 10b an, um die letzten drei Perioden als Grundlage für die Projektion in den nächsten Zeitraum zu verwenden. Das System ordnet die Gewichte automatisch den historischen Daten zu, die linear abfallen und auf 1,00 summieren. Zum Beispiel, wenn n 3, wird das System Gewichte von 0,5, 0,3333 und 0,1 zuweisen, wobei die letzten Daten das größte Gewicht erhalten. Mindestens erforderliche Verkaufsgeschichte: n plus die Anzahl der Zeiträume, die für die Auswertung der Prognoseleistung (PBF) erforderlich sind. A.12.1 Prognoseberechnung Anzahl der Perioden, die in den Glättungsdurchschnitt einbezogen werden (Verarbeitungsoption 10a) 3 in diesem Beispiel Verhältnis für einen Zeitraum vor 3 (n2 n) 2 3 (32 3) 2 36 0,5 Verhältnis für zwei Perioden vorher 2 (n2 n ) 2 2 (32 3) 2 26 0.3333 .. Verhältnis für drei Perioden vor 1 (n2 n) 2 1 (32 3) 2 16 0.1666 .. Januar-Prognose: 137 0,5 119 13 114 16 127,16 oder 127 Februar Vorhersage: 127 0,5 137 13 119 16 129 März-Prognose: 129 0,5 127 13 137 16 129,666 oder 130 A.12.2 Simulierte Prognoseberechnung Oktober 2004 Umsatz 129 16 140 26 131 36 133.6666 November 2004 Umsatz 140 16 131 26 114 36 124 Dezember 2004 Umsatz 131 16 114 26 119 36 119.3333 A.12.3 Prozent der Genauigkeitsberechnung POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.12.4 Mittlere Absolutabweichungsberechnung MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.13 Methode 11 - Exponentielle Glättung Diese Methode ähnelt Methode 10, Lineare Glättung. Bei der linearen Glättung weist das System den historischen Daten, die linear abweichen, Gewichte zu. Bei der exponentiellen Glättung weist das System Gewichte auf, die exponentiell abklingen. Die exponentielle Glättungsvorhersagegleichung lautet: Prognose a (vorherige Istverkäufe) (1 - a) vorherige Prognose Die Prognose ist ein gewichteter Durchschnitt des tatsächlichen Umsatzes aus der Vorperiode und der Prognose aus der Vorperiode. A ist das Gewicht auf den tatsächlichen Umsatz für die vorherige Periode angewendet. (1 - a) ist das Gewicht für die Vorhersage für die vorherige Periode angewendet. Gültige Werte für einen Bereich von 0 bis 1 und liegen in der Regel zwischen 0,1 und 0,4. Die Summe der Gewichte beträgt 1,00. A (1 - a) 1 Sie sollten einen Wert für die Glättungskonstante, a. Wenn Sie keine Werte für die Glättungskonstante zuordnen, berechnet das System einen angenommenen Wert, der auf der Anzahl der in der Verarbeitungsoption 11a angegebenen Perioden der Verkaufshistorie basiert. A die Glättungskonstante, die bei der Berechnung des geglätteten Durchschnitts für das allgemeine Niveau oder die Größe des Umsatzes verwendet wird. Gültige Werte für einen Bereich von 0 bis 1. n der Bereich der Verkaufsgeschichte Daten in die Berechnungen enthalten. Im Allgemeinen reicht ein Jahr der Verkaufsgeschichte Daten aus, um das allgemeine Umsatzniveau abzuschätzen. Für dieses Beispiel wurde ein kleiner Wert für n (n 3) gewählt, um die manuellen Berechnungen zu reduzieren, die zur Überprüfung der Ergebnisse erforderlich sind. Eine exponentielle Glättung kann eine Prognose erzeugen, die auf so wenig wie einem historischen Datenpunkt basiert. Mindestens erforderliche Verkaufsgeschichte: n plus die Anzahl der Zeiträume, die für die Auswertung der Prognoseleistung (PBF) erforderlich sind. A.13.1 Prognoseberechnung Die Anzahl der Perioden, die in den Glättungsdurchschnitt einbezogen werden sollen (Verarbeitungsoption 11a) 3 und Alpha-Faktor (Verarbeitungsoption 11b) leer in diesem Beispiel ein Faktor für die ältesten Verkaufsdaten 2 (11) oder 1, wenn alpha angegeben ist Ein Faktor für die 2. ältesten Verkaufsdaten 2 (12) oder alpha, wenn alpha angegeben ist ein Faktor für die 3. ältesten Verkaufsdaten 2 (13) oder alpha, wenn alpha angegeben ist ein Faktor für die letzten Verkaufsdaten 2 (1n) , Oder alpha, wenn alpha angegeben ist November Sm. Durchschn. A (Oktober aktuell) (1 - a) Oktober Sm. Durchschn. 1 114 0 0 114 Dezember Sm. Durchschn. A (November Tatsächlich) (1 - a) November Sm. Durchschn. 23 119 13 114 117.3333 Januar Vorhersage a (Dezember aktuell) (1 - a) Dezember Sm. Durchschn. 24 137 24 117.3333 127.16665 oder 127 Februar Vorhersage Januar Vorhersage 127 März Vorhersage Januar Vorhersage 127 A.13.2 Simulierte Prognoseberechnung Juli 2004 Sm. Durchschn. 22 129 129 August Sm. Durchschn. 23 140 13 129 136.3333 September Sm. Durchschn. 24 131 24 136.3333 133.6666 Oktober 2004 Verkauf Sep Sm. Durchschn. 133.6666 August 2004 Sm. Durchschn. 22 140 140 September Sm. Durchschn. 23 131 13 140 134 Oktober Sm. Durchschn. 24 114 24 134 124 November 2004 Verkauf Sep Sm. Durchschn. 124 September 2004 Sm. Durchschn. 22 131 131 Oktober Sm. Durchschn. 23 114 13 131 119.6666 November Sm. Durchschn. 24 119 24 119.6666 119.3333 Dezember 2004 Verkauf Sep Sm. Durchschn. 119.3333 A.13.3 Prozent der Genauigkeitsberechnung POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.13.4 Mittlere Absolutabweichungsberechnung MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.14 Methode 12 - Exponentielle Glättung Mit Trend und Saisonalität Diese Methode ähnelt Methode 11, Exponentielle Glättung darin, dass ein geglätteter Durchschnitt berechnet wird. Allerdings enthält das Verfahren 12 auch einen Begriff in der Prognosegleichung, um einen geglätteten Trend zu berechnen. Die Prognose besteht aus einer geglätteten gemittelten gemittelten, für einen linearen Trend angepasst. Wenn in der Verarbeitungsoption angegeben, wird die Prognose auch für Saisonalität angepasst. A die Glättungskonstante, die bei der Berechnung des geglätteten Durchschnitts für das allgemeine Niveau oder die Größe des Umsatzes verwendet wird. Gültige Werte für Alpha-Bereich von 0 bis 1. b Die Glättungskonstante, die bei der Berechnung des geglätteten Durchschnitts für die Trendkomponente der Prognose verwendet wird. Gültige Werte für Beta-Bereich von 0 bis 1. Ob ein saisonaler Index auf die Prognose a und b angewendet wird, sind unabhängig voneinander. Sie müssen nicht zu 1.0 hinzufügen. Mindestens erforderliche Verkaufsgeschichte: zwei Jahre plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseleistung (PBF) erforderlich sind. Methode 12 verwendet zwei exponentielle Glättungsgleichungen und einen einfachen Durchschnitt, um einen geglätteten Durchschnitt, einen geglätteten Trend und einen einfachen durchschnittlichen saisonalen Faktor zu berechnen. A.14.1 Prognoseberechnung A) Ein exponentiell geglätteter Durchschnitt MAD (122.81 - 114 133.14 - 119 135.33 - 137) 3 8.2 A.15 Auswertung der Prognosen Sie können Prognosemethoden auswählen, um bis zu zwölf Prognosen für jedes Produkt zu generieren. Jede Prognosemethode wird wahrscheinlich eine etwas andere Projektion schaffen. Wenn Tausende von Produkten prognostiziert werden, ist es unpraktisch, eine subjektive Entscheidung zu treffen, welche der Prognosen in Ihren Plänen für jedes der Produkte verwendet werden soll. Das System wertet automatisch die Leistung für jede der von Ihnen ausgewählten Prognosemethoden aus und für jede der prognostizierten Produkte. Sie können zwischen zwei Leistungskriterien, Mean Absolute Deviation (MAD) und Prozent der Genauigkeit (POA) wählen. MAD ist ein Maß für Prognosefehler. POA ist ein Maß für die Prognose-Bias. Beide dieser Leistungsbewertungsverfahren erfordern tatsächliche Verkaufsgeschichte Daten für einen Benutzer bestimmten Zeitraum. Diese Periode der jüngsten Geschichte wird als Halteperiode oder Perioden am besten fit (PBF) bezeichnet. Um die Leistung einer Prognosemethode zu messen, verwenden Sie die Prognoseformeln, um eine Prognose für die historische Holdout-Periode zu simulieren. Es werden in der Regel Unterschiede zwischen den tatsächlichen Verkaufsdaten und der simulierten Prognose für den Haltezeitraum bestehen. Wenn mehrere Prognosemethoden ausgewählt werden, tritt dieser Vorgang für jede Methode auf. Mehrere Prognosen werden für den Haltezeitraum berechnet und verglichen mit der bekannten Verkaufsgeschichte für denselben Zeitraum. Die Vorhersagemethode, die die beste Übereinstimmung (beste Passform) zwischen der Prognose und dem tatsächlichen Verkauf während des Haltezeitraums herstellt, wird für die Verwendung in Ihren Plänen empfohlen. Diese Empfehlung ist für jedes Produkt spezifisch und kann von einer Prognoseerzeugung zur nächsten wechseln. A.16 Mittlere Absolute Abweichung (MAD) MAD ist der Mittelwert (oder Durchschnitt) der Absolutwerte (oder Größe) der Abweichungen (oder Fehler) zwischen Ist - und Prognosedaten. MAD ist ein Maß für die durchschnittliche Größe der zu erwartenden Fehler, bei einer Prognosemethode und Datenhistorie. Da bei der Berechnung absolute Werte verwendet werden, werden bei positiven Fehlern keine negativen Fehler ausgelöst. Beim Vergleich mehrerer Prognosemethoden hat sich derjenige mit dem kleinsten MAD als zuverlässig für dieses Produkt für diesen Holdout-Zeitraum erwiesen. Wenn die Prognose unvoreingenommen ist und Fehler normal verteilt sind, gibt es eine einfache mathematische Beziehung zwischen MAD und zwei anderen gemeinsamen Maßnahmen der Verteilung, Standardabweichung und Mean Squared Error: A.16.1 Prozent der Genauigkeit (POA) Prozent der Genauigkeit (POA) ist Ein Maß für die Prognose-Bias. Wenn die Prognosen konsequent zu hoch sind, sammeln sich die Bestände an und die Inventurkosten steigen. Wenn die Prognosen konsequent zwei niedrig sind, werden die Vorräte verbraucht und der Kundendienst sinkt. Eine Prognose, die 10 Einheiten zu niedrig ist, dann 8 Einheiten zu hoch, dann 2 Einheiten zu hoch, wäre eine unvoreingenommene Prognose. Der positive Fehler von 10 wird durch Negativfehler von 8 und 2 abgebrochen. Fehler Tatsächlich - Prognose Wenn ein Produkt im Inventar gespeichert werden kann und wenn die Prognose unvoreingenommen ist, kann eine kleine Menge an Sicherheitsbestand verwendet werden, um die Fehler zu puffern. In dieser Situation ist es nicht so wichtig, Prognosefehler zu beseitigen, da es darum geht, unvoreingenommene Prognosen zu erzeugen. Doch in der Dienstleistungsbranche wäre die obige Situation als drei Fehler zu betrachten. Der Dienst würde in der ersten Periode unterbesetzt sein, dann überbesetzt für die nächsten zwei Perioden. In den Diensten ist die Größenordnung der Prognosefehler in der Regel wichtiger als die Vorhersage. Die Summation über die Holdout-Periode ermöglicht positive Fehler, um negative Fehler zu annullieren. Wenn die Summe der tatsächlichen Verkäufe die Summe der Prognoseverkäufe übersteigt, ist das Verhältnis größer als 100. Natürlich ist es unmöglich, mehr als 100 genau zu sein. Wenn eine Prognose unvoreingenommen ist, wird das POA-Verhältnis 100 sein. Daher ist es wünschenswerter, 95 genau zu sein, als 110 genau zu sein. Die POA-Kriterien wählen die Prognosemethode, die ein POA-Verhältnis am nächsten zu 100 hat. Scripting auf dieser Seite verbessert die Content-Navigation, aber ändert den Inhalt nicht in irgendeiner Weise. Moving Averages: Was sind sie unter den beliebtesten technischen Indikatoren, gleitende Durchschnitte sind Verwendet, um die Richtung der aktuellen Trend zu messen. Jede Art von gleitendem Durchschnitt (üblicherweise in diesem Tutorial als MA geschrieben) ist ein mathematisches Ergebnis, das durch Mittelung einer Anzahl von vergangenen Datenpunkten berechnet wird. Einmal bestimmt, wird der daraus resultierende Durchschnitt dann auf ein Diagramm aufgetragen, um es den Händlern zu ermöglichen, geglättete Daten zu betrachten, anstatt sich auf die alltäglichen Preisschwankungen zu konzentrieren, die allen Finanzmärkten innewohnen. Die einfachste Form eines gleitenden Durchschnitts, die in geeigneter Weise als ein einfacher gleitender Durchschnitt (SMA) bekannt ist, wird berechnet, indem man das arithmetische Mittel eines gegebenen Satzes von Werten annimmt. Zum Beispiel, um einen grundlegenden 10-Tage gleitenden Durchschnitt zu berechnen, würden Sie die Schlusskurse aus den letzten 10 Tagen addieren und dann das Ergebnis mit 10 teilen. In Abbildung 1 ist die Summe der Preise für die letzten 10 Tage (110) Geteilt durch die Anzahl der Tage (10), um den 10-Tage-Durchschnitt zu erreichen. Wenn ein Händler einen 50-tägigen Durchschnitt anstatt sehen möchte, würde die gleiche Art von Berechnung gemacht werden, aber es würde die Preise in den letzten 50 Tagen enthalten. Der daraus resultierende Durchschnitt unter (11) berücksichtigt die letzten 10 Datenpunkte, um den Händlern eine Vorstellung davon zu vermitteln, wie ein Vermögenswert in Bezug auf die letzten 10 Tage festgesetzt wird. Vielleicht fragen Sie sich, warum technische Händler dieses Werkzeug einen gleitenden Durchschnitt nennen und nicht nur ein normales Mittel. Die Antwort ist, dass, wenn neue Werte verfügbar werden, die ältesten Datenpunkte aus dem Set gelöscht werden müssen und neue Datenpunkte kommen müssen, um sie zu ersetzen. Damit wird der Datensatz ständig auf neue Daten übertragen, sobald er verfügbar ist. Diese Berechnungsmethode stellt sicher, dass nur die aktuellen Informationen berücksichtigt werden. In Abbildung 2, sobald der neue Wert von 5 dem Satz hinzugefügt wird, bewegt sich der rote Kasten (der die letzten 10 Datenpunkte repräsentiert) nach rechts und der letzte Wert von 15 wird aus der Berechnung gelöscht. Weil der relativ kleine Wert von 5 den hohen Wert von 15 ersetzt, würden Sie erwarten, dass der Durchschnitt der Datensatzabnahme, was es tut, in diesem Fall von 11 bis 10 zu sehen. Was verschieben die Durchschnitte aussehen Einmal die Werte der MA wurden berechnet, sie werden auf ein Diagramm geplottet und dann verbunden, um eine gleitende durchschnittliche Linie zu erzeugen. Diese geschwungenen Linien sind auf den Charts der technischen Händler üblich, aber wie sie verwendet werden, kann drastisch variieren (mehr dazu später). Wie Sie in Abbildung 3 sehen können, ist es möglich, mehr als einen gleitenden Durchschnitt zu jedem Diagramm hinzuzufügen, indem Sie die Anzahl der in der Berechnung verwendeten Zeiträume anpassen. Diese geschwungenen Linien mögen anfangs ablenkend oder verwirrend erscheinen, aber sie werden sich daran gewöhnt, wie es die Zeit verläuft. Die rote Linie ist einfach der durchschnittliche Preis in den letzten 50 Tagen, während die blaue Linie der durchschnittliche Preis in den letzten 100 Tagen ist. Nun, da Sie verstehen, was ein gleitender Durchschnitt ist und wie es aussieht, führen Sie gut eine andere Art von gleitenden Durchschnitt ein und untersuchen, wie es sich von dem zuvor erwähnten einfachen gleitenden Durchschnitt unterscheidet. Der einfache gleitende Durchschnitt ist bei den Händlern sehr beliebt, aber wie alle technischen Indikatoren hat er seine Kritiker. Viele Einzelpersonen argumentieren, dass die Nützlichkeit des SMA begrenzt ist, weil jeder Punkt in der Datenreihe gleich gewichtet wird, unabhängig davon, wo er in der Sequenz auftritt. Kritiker argumentieren, dass die jüngsten Daten signifikanter sind als die älteren Daten und einen größeren Einfluss auf das Endergebnis haben sollten. Als Reaktion auf diese Kritik begannen die Händler, den jüngsten Daten mehr Gewicht zu verleihen, was seither zur Erfindung von verschiedenen Arten von neuen Durchschnittswerten geführt hat, wobei der populärste der exponentielle gleitende Durchschnitt (EMA) ist. (Für weitere Lesungen siehe Grundlagen der gewichteten gleitenden Mittelwerte und was ist der Unterschied zwischen einer SMA und einer EMA) Exponentieller bewegter Durchschnitt Der exponentielle gleitende Durchschnitt ist eine Art gleitender Durchschnitt, der den jüngsten Preisen mehr Gewicht verleiht, um es besser zu machen Zu neuen Informationen. Lernen der etwas komplizierten Gleichung für die Berechnung einer EMA kann für viele Händler unnötig sein, da fast alle Charting-Pakete die Berechnungen für Sie machen. Jedoch für Sie Mathe-Aussenseiter da draußen, hier ist die EMA-Gleichung: Wenn Sie die Formel verwenden, um den ersten Punkt der EMA zu berechnen, können Sie feststellen, dass es keinen Wert gibt, der als vorherige EMA verwendet werden kann. Dieses kleine Problem kann gelöst werden, indem man die Berechnung mit einem einfachen gleitenden Durchschnitt beginnt und mit der obigen Formel von dort weiter fortfährt. Wir haben Ihnen eine Beispielkalkulationstabelle zur Verfügung gestellt, die reale Beispiele enthält, wie man sowohl einen einfachen gleitenden Durchschnitt als auch einen exponentiellen gleitenden Durchschnitt berechnet. Der Unterschied zwischen EMA und SMA Nun, da Sie ein besseres Verständnis davon haben, wie die SMA und die EMA berechnet werden, können Sie sich einen Blick darauf werfen, wie sich diese Durchschnittswerte unterscheiden. Mit Blick auf die Berechnung der EMA, werden Sie feststellen, dass mehr Wert auf die jüngsten Datenpunkte gesetzt wird, so dass es eine Art von gewichteten Durchschnitt. In Abbildung 5 ist die Anzahl der in jedem Durchschnitt verwendeten Zeiträume identisch (15), aber die EMA reagiert schneller auf die sich ändernden Preise. Beachten Sie, wie die EMA einen höheren Wert hat, wenn der Preis steigt, und fällt schneller als die SMA, wenn der Preis sinkt. Diese Reaktionsfähigkeit ist der Hauptgrund, warum viele Händler es vorziehen, die EMA über die SMA zu nutzen. Was sind die verschiedenen Tage Mittleren Durchlauf-Durchschnitten sind ein völlig anpassbarer Indikator, was bedeutet, dass der Benutzer frei wählen kann, was Zeitrahmen sie beim Erstellen des Durchschnitts wollen. Die häufigsten Zeiträume, die bei gleitenden Durchschnitten verwendet werden, sind 15, 20, 30, 50, 100 und 200 Tage. Je kürzer die Zeitspanne ist, um den Durchschnitt zu schaffen, desto empfindlicher wird es Preisänderungen. Je länger die Zeitspanne, desto weniger empfindlich oder mehr geglättet wird, wird der Durchschnitt sein. Es gibt keinen richtigen Zeitrahmen, um bei der Einrichtung Ihrer gleitenden Durchschnitte zu verwenden. Der beste Weg, um herauszufinden, welche am besten für Sie arbeitet, ist, mit einer Reihe von verschiedenen Zeiträumen zu experimentieren, bis Sie eine finden, die zu Ihrer Strategie passt. Umzugsdurchschnitte: Wie man sie benutzt
No comments:
Post a Comment